Seventh Semester B.E. Degree Examination, Jan./Feb. 2023 **Power Electronics**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain different types of power electronic circuits.

(10 Marks)

b. Explain peripheral effects of power electronic components and equipment and mention how to reduce them with a neat block diagram. (10 Marks)

OR

2 a. List different types of power MOSFET and explain p-channel depletion type in detail.

(10 Marks)

b. Explain the features and structure of IGBT.

(10 Marks)

Module-2

3 a. Explain two transistor model of SCR and derive an expression for anode current in terms of transistor parameters for a thyristor. (10 Marks)

b. Explain static anode-cathode characteristics of SCR.

(10 Marks)

OF

4 a. Explain gate characteristics of SCR with a neat diagram.

(10 Marks)

b. Explain different turn-on methods of SCR.

(05 Marks)

c. Differentiate between natural and forced commutation.

(05 Marks)

Module-3

5 a. Explain single phase full converter with the help of circuit diagram and waveforms.

(10 Marks)

b. The single phase dual converter is operated from a 120V, 60hz supply and the load resistance is $R = 10\Omega$. The circulating inductance is $L_r = 40 \text{mH}$ delay angles are $\alpha_1 = 60^\circ$ and $\alpha_2 = 120^\circ$. Calculate the peak circulating current and the peak current of converter 1.

(10 Marks)

OR

- a. An on-off type ac regulator is operating with a resistive load of R = 10Ω and the rms supply v/g is 230V. The controller remains on for 40 cycles and is off for 60 cycles. Determine:

 i) rms load v/g
 ii) Input power factor.
 - b. Explain the principle of phase controlled converter operation.

(10 Marks)

Module-4

7 a. Explain buckboost regulator with neat circuit diagram and waveforms. (10 Marks)

b. The buck regulator has an input v/g of Vs = 12V. The required average o/p v/g is Va = 5V at $R = 500\Omega$ and the peak to peak o/p ripple v/g is 20mV. The switching frequency is 25kHz. If the peak to peak ripple current of inductor is limited to 0.8A. Determine: i) Duty cycle K ii) The filter inductance iii) The filter capacitor C and iv) Critical values of L and C.

(10 Marks)

OF

8 a. Explain different dc converter classification.

(10 Marks)

b. The step down dc converter has a resistive load $R = 10\Omega$ and the input voltage is Vs = 220V, when the converter switch remains on its v/g drop is $u_{ch} = 2V$ and the chopping frequency f = 1kHz. If the duty cycle is 50%, determine: i) average output v/g va ii) rms o/p v/g vo iii) Converter efficiency. (10 Marks)

Module-5

9 a. Explain single phase half bridge inverter with neat circuit diagram and waveforms.

(10 Marks)

b. The single-phase half-bridge inverter has a resistive load of $R = 2.4\Omega$ and the dc i/p v/g $V_S = 48v$. Determine i) the rms o/p v/g at the fundamental frequency V_{01} , ii) the output power P_0 iii) average and peak currents of each transistor iv) the peak reverse blocking voltage V_{BR} of each transistor. (10 Marks)

OR

10 a. Explain dc switches with neat circuit diagram.

(06 Marks)

b. Outline various performance parameters used for inverters.

(08 Marks)

c. Explain single phase AC switches.

(06 Marks)